

Web Services in Embedded
Systems

 July 2001 WHITE PAPER

Contents

Introduction..1

Web Services...1

Protocol Layer - HTTP..2

Packaging Layer - SOAP ..3

Information Layer – XML...6

Services Layer – Web Services and WSDL ..7

UDDI.. 10

Web Services in Embedded Systems .. 10

Accessing Web Services... 11

Providing Web Services.. 12

Design Issues... 13

Security ... 13

Complexity... 13

Resource Constraints... 14

Verbosity ... 14

8 and 16 Bit Support .. 15

Enterprise Integration... 15

Summary ... 16

References .. 17

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 1

Introduction
There is a long history of technologies that were originally designed for scientific
and enterprise computing finding their way into embedded systems. In fact,
you can go back and look at the first electronic computer, the ENIAC. ENIAC
was designed to calculate artillery and missile trajectories , while today’s
embedded systems in the missiles not only calculate but also control those
same trajectories. Other examples of technologies originally developed for
mainframe and server systems that have filtered down to embedded systems
include RS-232, virtual memory, instruction/data caches, operating systems,
graphical displays and of course everyone’s favorite technology, the Internet.

Perhaps the only change in this trend over the years is that the speed of this
technology adoption has accelerated. That is why any organization that wants
to stay abreast of developments in the embedded systems world should keep at
least one eye on what is happening in the enterprise and business computing
space. Perhaps the biggest developing story in the enterprise space is Web
Services. It is unusual to see the likes of Microsoft, Sun, IBM, Oracle, HP and
others agree on anything, but they all agree that Web Services will be the native
language of business applications. When you hear about Microsoft.NET, Sun
ONE, HP’s e-services and IBM’s WebShpere, you are hearing about Web
Services. Most of these organizations speak of Web Services in the context of
Business-to-Business (B2B) and Business-to-Consumer (B2C) information
exchange and e-commerce. As you will discover in the following article, Web
Services are just as powerful for connecting e-appliances and other distributed
intelligent assets into the business enterprise to provide such valuable services
as automatically generating service requests, performing remote diagnostics
and automatic consumables reordering.

Web Services
A Web Service is a programmable component that provides a business service
and is accessible over the Internet. Web Services can be standalone or linked
together to provide enhanced system functionality. Buying airline tickets,
accessing an online calendar and obtaining tracking information for your
overnight shipment are all business functions that have been exposed to the
outside world as Web Services. Web Services consist of a set of methods that
operate on messages containing either document-oriented or procedure oriented
information. An architecture that is based on Web Services is the logical
evolution from a system of distributed object-oriented components to a network
of services, providing a loosely couple infrastructure that enable cross-

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 2

enterprise integration. Web services differ from existing component object
models and their associated object model specific protocols , such as CORBA &
Internet Inter-ORB Protocol, Component Object Model (COM) & DCOM, and
Java & Remote Method Invocation (RMI) in that the distributed components are
interfaced via non-object specific protocols. Web services can be written in any
language and can be accessed using the familiar, and firewall friendly Hypertext
Transport Protocol (HTTP).

Protocol Layer

Packaging Layer

Information Layer

Service Layer

HTTP/HTTPS, SMTP, FTP

SOAP

Web Services & WSDL

XML

UDDI
Discovery Layer

Figure 1 Web Services Stack

As shown in Figure 1, Web Services consist of multiple layers that, when
stacked together, form the basis for a standard mechanism for discovering,
describing and invoking the functionality provided by a stand alone Web
Service.

Protocol Layer - HTTP

Starting at the bottom of the layered architecture model in Figure 1, any of the
standard Internet protocols may be used to invoke Web Services over the
network. The initial definition focuses specifically on HTTP/1.1 (and HTTPS
(HyperText Transport Protocol Secure) protocols. HTTP/1.1 is a text-based,
"request-response" type protocol that specifies that a client opens a connection
to a server, then sends a request using a very specific format. The server then
responds and, if necessary, keeps the connection open. Other
request/response style transports, such as File Transfer Protocol (FTP) and
Simple Mail Transport Protocol (SMTP) can also be used but are not yet defined
in the standards around Web Services.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 3

Packaging Layer - SOAP

Simple Object Access Protocol (SOAP) is a lightweight protocol designed for the
exchange of information. Focused on distributed, decentralized environments,
it provides a framework to invoke services across the Internet and provides the
mechanism for enabling cross-platform integration independent of any
programming language and distributed object infrastructure. SOAP represents
the evolution of xml-rpc and has been adopted as an Internet standard to W3C.
SOAP is text (XML) based and can run over HTTP, making it better able to
operate in the face of firewalls than DCOM, RMI or IIOP. SOAP is also simpler
to implement on an embedded device than developing an ORB.

SOAP does not define a programming model or implementation; instead it
defines a modular packaging model and the encoding mechanisms for encoding
data within modules. This allows SOAP to be used in any number of systems
ranging from message passing systems to remote procedure calls. A s shown in
Figure 2 a SOAP message is XML encoded and consists of three parts:
• The SOAP envelope that provides the framework for packaging message

information.
• The SOAP encoding rules that defines how it should be processed.
• The SOAP RPC representation that defines how to represent remote

procedure calls and responses.

The SOAP specification also defines bindings to transport SOAP messages using
the HTTP protocol. SOAP messages are uni-directional. Individual messages
are typically combined to form a request/response mechanism. Figure 2
illustrates an example SOAP message. This example shows the request
message for an “Event” Web Service – where the information of the message is
XML content, and the packaging is accomplished using SOAP. In the example
in Figure 2, the result to the SubmitEventRequest is returned as another SOAP
message, shown in Figure 4. This message is packaged as part of the HTTP
response.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 4

POST /a2b/EventService HTTP/1.1
Host: a2b.example.questra.com
Content-Type: text/xml; charset="utf-8“
Content-Length: nnnn
SOAPAction: /a2b/EventService#SubmitEvent

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>A2B Header</SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <SubmitEventRequest>
 <Source>Copier54321</Source>

<Description>MotorFailure</Description>

 </SubmitEventRequest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

POST /a2b/EventService HTTP/1.1
Host: a2b.example.questra.com
Content-Type: text/xml; charset="utf-8“
Content-Length: nnnn
SOAPAction: /a2b/EventService#SubmitEvent

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>A2B Header</SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <SubmitEventRequest>
 <Source>Copier54321</Source>

<Description>MotorFailure</Description>

 </SubmitEventRequest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 2 SOAP Request Message Example

The SOAP message exchange models requires that applications receiving a
SOAP message execute the following sequence of actions:

1. Identify all the components of the SOAP message that are intended for
this particular application. Applications may act as SOAP
intermediaries and pass parts of the message on to other
applications.

2. Verify that all the mandatory parts specified in the SOAP message are
supported by the application and process them accordingly.

3. If the SOAP application is not the end destination of the message it
should remove all the parts that the application consumes and then
forward the message to the next application the message is intended
for.

The SOAP encoding style uses both scalar types (strings, integers, etc.) and
compound types such as structures and arrays. These types appear as
elements in an XML document. The data types defined in the XML Schema
specification along with types derived from those data types can be used
directly as SOAP elements. Figure 3 shows an example of a compound data
type.

 <xsd:complexType name="Event">
 <xsd:element name="Source" type="xsd:string"/>

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 5

 <xsd:element name="Description" type="xsd:string"/>
 <xsd:element name="MemberId" type="xsd:string"/>
 <xsd:element name="GeneratedAt" type="xsd:timeInstant" minOccurs="0"/>
 <xsd:element ref="EventInfoList" minOccurs="0"
 </xsd:complexType>

Figure 3 Compound SOAP Data Type

Any robust messaging system must expect that faults can occur and SOAP is
no exception. SOAP has a built in Fault element that is used to carry error and
status information. SOAP defines several built-in fault codes to handle such
errors as version mismatches, not understanding some elements marked as
required and incorrectly formed messages. Being based on XML makes the
fault reported system of SOAP highly extensible and quite flexible.

The SOAP specification details the mechanisms for using SOAP for making
remote procedure calls (RPC). The example shown in Figure 2 actually invokes
a remote procedure (in this case a Web Service called EventService) by
packaging the parameters required by the procedure as a structure. The
response to a method invocation is also modeled as a structure containing the
return value and possibly the parameters in the same order they were passed
in.

HTTP/1.0 200 OK
Content-Type: text/xml
Content-Length: 316
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>A2B Header</SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <SubmitEventResponse>
 <Status>OK</Status>
 </SubmitEventResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

HTTP/1.0 200 OK
Content-Type: text/xml
Content-Length: 316
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>A2B Header</SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <SubmitEventResponse>
 <Status>OK</Status>
 </SubmitEventResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
Figure 4 SOAP Response Message Example

It is important to note that Web Services and SOAP are two different things.
SOAP is simply one way to package and bind the information required to invoke
a Web Service. It happens to be the method that is most commonly associated
with Web Services, but Web Services can be invoked using other encoding

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 6

techniques, such as simple URL-encoded messages for bandwidth constrained
scenarios. In addition, SOAP itself is not strictly relegated to Web Services.
SOAP can be used as an access mechanism for any type of remote objects or
procedures or a just a simple message passing mechanism.

Information Layer – XML

XML (eXtensible Markup Language) is a meta-language that enables cross-
platform data interchange using a standard method for encoding and
formatting information. Unlike HTML (HyperText Markup Language), XML
affords you the freedom to publish useful information not only about how your
data is structured, but also what your data means (i.e., its context). In
addition, significant benefits are accrued through maintaining an XML
document’s structure, content and presentation as three distinct components.
For example, part of the content of an HTML document may look as follows –

 Motor Failure

this instructs a browser to display the text string “Motor Fault” as bold text.
HTML is purely about formatting and display. XML takes it much further and
provides information about what the content is describing, not just about how
it looks. For example, an XML document may take the same text and but
actually apply a datatype to is as follows –

</FaultType> Motor Failure </FaultType>

This gives the interpreter of this document a much clearer understanding of
what the text actually is trying to signify. For more information than anyone
could possibly absorb about XML direct your browser to http://www.xml.org.

It should be noted that there are those out there that would tell you that all you
need to do is support XML in your devices and you have solved all of the world’s
problems. XML is not a panacea, it is a markup language. Supporting XML
alone does not magically integrate you into a host of business applications or
make for a complete solution. XML may provide a description of an event as a
fault, but it does not provide the device or business logic that says what to do
when that fault occurs or how to ensure that the fault indication is properly
captured in one or more enterprise applications. That is why the higher level
concept of Web Services, which are based on XML is so important – Web
Services provide access to this logic.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 7

Services Layer – Web Services and WSDL

The interface to Web Services are defined in the XML based Web Services
Description Language (WSDL) which provides all of the information necessary
for an application to access the specified Web Service.

A WSDL document is an XML based description of a Web Service. WSDL takes
great pains to promote reusability. Several abstract and concrete elements are
combined to define the functionality and access mechanisms of a Web Service.
The following list enumerates the elements used when defining a Web Service.

• Types – containers for data type definitions can be scalar or complex,
currently based on the XML Schema (XSD).

• Message – an abstract, typed definition of the data being
communicated.

• Operation – an abstract description of an action supported by the
Web Service.

• Port Type – an abstract set of operations supported by one or more
end points.

• Binding – a concrete protocol and data format specification for a
particular port type.

• Port – a single endpoint that is an instantiation of a port type in
combination with a binding and a network address.

• Service – a collection of related ports.

As listed above, a Web Service is defined in a collection of ports which, in turn,
are a collection of abstract operations and messages bound to a concrete
protocol and data format specification. Keeping the operations and messages
abstract allow them to be bound to different protocols and data formats such as
SOAP, HTTP GET/POST or MIME.

<?xml version="1.0" encoding="UTF-8"?>
<!--
 a2bML Framework 1.0
 A2B Event Service: message and port type definitions
 Copyright 2000 Questra Corporation
-->

<definitions name="EventService"
 targetNamespace= Deleted for Clarity>

 <!—Section 1 -- Datatypes -->
 <types>

 <xsd:element name="EventInfoItem">
 <xsd:complexType content="elementOnly">
 <xsd:annotation>

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 8

 <xsd:appinfo> Holds event description.</xsd:appinfo>
 </xsd:annotation>
 <xsd:group>
 <xsd:element ref="a2bdt:Name" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="a2bdt:Description" minOccurs="1" maxOccurs="1"/>
 </xsd:group>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="EventInfoList">
 <xsd:complexType content="elementOnly">
 <xsd:annotation>
 <xsd:appinfo>Container structure for an event.</xsd:appinfo>
 </xsd:annotation>
 <xsd:group>
 <xsd:element ref="EventInfoItem" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:group>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="Event">
 <xsd:element name="Source" type="xsd:string"/>
 <xsd:element name="Description" type="xsd:string"/>
 <xsd:element name="MemberId" type="xsd:string"/>
 <xsd:element name="GeneratedAt" type="xsd:timeInstant" minOccurs="0"/>
 <xsd:element ref="EventInfoList" minOccurs="0"
 </xsd:complexType>

 </types>

 <!-- Messages are based on common data type definitions -->
 <import namespace - deleted for clarity -->

 <!—Section 2 -- Message types -->
 <message name="SubmitEventRequest">
 <part name="RequestHeader" element="a2bheader:RequestHeader"/>
 <part name="Event" element="Event"/>
 </message>
 <message name="SubmitEventResponse">
 <part name="ResponseHeader" element="a2bheader:ResponseHeader"/>
 </message>

 <!—Section 3 -- Port types -->
 <portType name="EventPortType">
 <operation name="submitEvent">
 <input message="SubmitEventRequest"/>
 <output message="SubmitEventResponse"/>
 <fault message="a2bdt:Exception"/>
 </operation>
 </portType>

 <!—Section 4 -- Soap Binding -->
 <binding name="EventSoapBinding" type="EventPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submitEvent">
 <soap:operation soapAction="http://a2b.example.questra.com/EventService"/>
 <input>

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 9

 <soap:header/>
 <soap:body use="encoded"
 namespace="http://a2b.example.questra.com/event.xsd"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>
 </input>
 <output>
 <soap:header/>
 <soap:body use="encoded"
 namespace="http://a2b.example.questra.com/event.xsd"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>
 </output>
 </operation>
 </binding>

 <!—Section 5 -- Service -- A Combination of a port and a binding -->
 <service name="EventService">
 <port name="EventSoapPort" binding="EventSoapBinding">
 <soap:address location="http://a2b.example.questra.com/EventSoapService"/>
 </port>
 </service>

</definitions>

Figure 5 WSDL Document

Figure 5 shows an example of a WSDL document. It describes an Event Service
that might be invoked by some remote device wanting to indicate a fault
condition. Section 1 of the document describes the data types used by the
event service. Of particular interest is the complex type “Event” that contains
information useful to the processing of the fault including the ID of the device
submitting the event, a description of the event and a timestamp of when the
event occurred. Section 2 of the WSDL document describes the messages that
are involved in invoking a service. In this simplified case there are two
messages – one to actually invoke the service (SubmitEventRequest) and a
response message sent from the service to the requestor
(SubmitEventResponse). Section 3 of the document describes the abstract
ports available. This example has one port that supports one operation. The
operation is accessed through a SubmitEventRequest message, when the
operation completes it sends out a SubmitEventResponse message. If an error
occurs during processing the operation sends out a a2bdt:Exception message
which is detailed in separate data type definition document. Section 4 of the
document defines an abstract binding of an operation (SubmitEvent) to a SOAP
remote procedure call (RPC) mechanism using HTTP as the transport
mechanism. Both the input and output messages of this operation are SOAP
encoded. Finally, Section 5 of the document ties everything together to create a
concrete service. What makes it real is the inclusion of a location where the
service can be accessed, in this case it is a URL.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 10

While this looks like a complex document it is no more intimidating than some
of the API documents that exist for making operating system calls or accessing
functions from a software library. There are also code generation tools targeted
for embedded systems that can read in a WSDL document and output skeleton
interfaces and classes for a variety of embedded programming languages
including C and C++. These code modules enable transparent access to a Web
Service through a local proxy mechanism. Accessing a Web Service then
becomes as simple as making a local function call.

UDDI

The final, and optional, piece in the Web Services stack in the Universal
Description, Discovery and Integration (UDDI) specification. UDDI defines a
way to publish information about Web Services as well as providing a
mechanism to discover what Web Services are available. At its bare essence,
UDDI is a registration system instantiated as an series of XML files and
associated schema that contain a description of a business entity and the Web
Services that it offers. It is envisioned that there will be many public UDDI
registration servers distributed about the Web that continually replicate data
amongst themselves.

The UDDI specification provides a programmatic interface that allows a
business to register a Web Service as well as search through the registry for a
specific Web Service. Once the desired Web Service is identified a pointer to the
location of the WSDL document is provided. It is important to note that UDDI
is entirely optional. Companies with Web Services that want to limit specific
functionality to people or devices of their choosing need not advertise their
service externally.

Web Services in Embedded Systems
With an introductory understanding of Web Services under our belts we can
now focus our attention on the question that many embedded developers must
be asking –“This is all Information Technology (IT) related stuff, why should I
care?” To answer that question all we need to do is revisit the beginning
paragraphs of this article. The lines between embedded device and enterprise
software are blurring rapidly. Intelligent devices in the field contain incredibly
valuable data about status, historical usage, consumables needs, wear and tear
and other parameters. In the continuing evolution of the connected device
(Figure 6),

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 11

Figure 6 The Evolution of Connected Devices

devices have moved from standalone systems to the many Internet enabled
devices that exist today. However most developers have stopped short of full
evolution by providing simple Web interfaces or, at best, point solutions. The
drawback of these systems is that they don’t get the information into the
enterprise systems that can extract the tremendous value that exists. That
value may expose itself as reduced field service operating costs, usage based
billing, additional revenues through e-replenishment systems or some other
value added service that can be provided through the device. In order to do
this, it is essential that an end-to-end solution connect the devices into
enterprise applications such as an e-commerce, ERP or Field Service
application. What better way to accomplish this goal than by speaking what is
becoming the native language of these enterprise applications – namely Web
Services. A couple of concrete examples should help clarify how an embedded
device might use a Web Service.

Accessing Web Services

A digital copier has detected a failure condition in on of its motors. In the
prehistoric era of intelligent devices, the best the copier might do is write to a
log file and put a message on its LCD interface to indicate that service is
required. In a Web Services world, the device may execute the previous two

Electro-mechanical Systems
w/ No Intelligence

Microprocessor Based Systems
w/ Switches and LED Displays

Microprocessor Based Systems
w/ Serial Connectivity and Diagnostic Ports

Networked Systems
w/ Telnet & SNMP

Networked Systems
w/ Web Interfaces

Networked Systems w/ Web
Based Enterprise Integration

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 12

steps, but also call what appears to be a local Event Notification function.
Under the hood, a Web Service proxy would take the notification, wrap it up in
a SOAP encoded message and invoke a remote Event Web Service. The Event
Web Service would take this event, a motor failure, and process it according to
its pre-defined workflow and business rules. The result of that processing may
be the invocation of other Web Services, such as submission of a Service
Request into a field service application as well as a check on the availability of a
spare motor from an inventory management system. Through this use of Web
Services and Enterprise Application Integration, this simple request may trigger
a variety of actions within the enterprise – enabling a highly automated
environment. The result is that a simple component failure has automatically
set into motion a complex series of events (before the customer may even be
aware of the problem) that ultimately results in a faster response to a problem
and a high degree of customer satisfaction. This is just one example of a Web
Service that could provide value to an embe dded system. Ordering
consumables, usage metering, operational efficiency monitoring are just some
of the functions that could be provided with the proper Web Services.

Providing Web Services

Outbound invocation of a Web Service makes sense, but what about the other
direction? Why would a device want to be the provider of a Web Service? To
continue the previous example, let’s say that the field service application has
sent a wireless notification to a field technician’s PDA. In the old days, the
technician would call the customer to schedule a visit, arrive at the site and
plug in to the copier to perform a set of diagnostic routines. All too often this
diagnostic sequence suggested that the proper fix involved a part that the
technician did not have with him and a trip to a warehouse was in order. In a
Web Services world, the technician could use his PDA to remotely invoke the
diagnostic routines; in essence the PDA is the client to the Web Servers offered
up by the device. The technician can perform the diagnosis remotely and arrive
at the customer site with the proper replacement parts in hand. Other
functions such as firmware upgrades and remote control could also be provided
using the Web Services standards.

Furthermore, by allowing remote devices to “publish” their available services to
public or private UDDI registries, the availability of services such as Remote
Diagnostics or Firmware Upgrades can be determined dynamically. This
provides greater flexibility and extensibility when creating applications that a
typical Field Service technician would use. No longer does this functionality
have to be hard coded for specific device types.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 13

Design Issues

Each new technology seems to bring with it a whole new set of design tradeoffs
and issues. Web Services are no different. Embedded systems just seem to
exacerbate the problem. Limited resources, severe cost constraints, and
operational considerations all combine to create a complex set of engineering
tradeoffs. A discussion of some of the purported issues surrounding Web
Services follows.

Security
Security is a major issue anytime you are exposing device information to a
public network. Security has many aspects to it including encryption,
authentication and authorization. Unfortunately, the SOAP specification is
noticeably silent about this issue. Any serious implementation of Web Services
must address such issues. Luckily SOAP allows for an XML wrapper to be
placed around the actual SOAP message. Within that message framework
credentials can be presented and used to authorize a specific action.
Fortunately, some Web Service framework implementations targeted at the
embedded world do support authenticated access to authorized services. This
works both ways in that only authorized people can access certain Web Services
provided by a device, while certain Web Services provided by an enterprise may
only be available to authorized devices.

Complexity
Just as when Object Oriented programming (OOP) started to filter down into
embedded systems, detractors may say that while Web Services are fine for
large systems, it just doesn’t make sense for the embedded world. Just as with
OOP and C++, people also tend to confuse the concept with a specific
implementation. Web Services are no different – they combine some of the best
features of OOP and distributed computing. Let the processor best suited to a
particular process or calculation handle that task but keep the actual inner
workings of that task hidden behind a specific interface. Implementing the
networking, XML parsing and SOAP encapsulation can be a bit intimidating but
luckily there are tools designed to abstract away much of the complexity. For
example, one company provides a WSDL compiler targeted specifically for
embedded systems. Such a code generator takes an XML based WSDL
document as an input and produces C++ code that implements a proxy for a
Web Service. For the application developer this means that the Event Service
(highlighted in the previous examples) is accessed with what appears to be a
simple local function call such as Event.SubmitEvent(MotorFailure). The proxy

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 14

software takes that function call, wraps it in a SOAP message and sends it out
over the network. When the response to the SOAP message arrives, it is parsed
and the result code is returned to the calling routine. This is especially
attractive when taking an existing design and giving it the capability to access
Web Services. Most existing devices write to a log file or output a diagnostic
code when a fault is detected. Submitting that fault event to an enterprise
application becomes a matter of adding one more function call in the fault
handling routine.

Resource Constraints
It seems that one of the main features that define an embedded system is that
you don’t have enough memory, processing power or some other resource to do
what you want to. The thought of adding an XML parser and SOAP encoding
engine to a system seems problematic at best. In many cases that might be
true – a full-blown XML parser can easily add over 180Kbytes of code.
Fortunately, many of the features of the XML standard is not required for SOAP
encoding. A well pared XML parser that fully supports SOAP can be under 20
Kbytes in size. For those truly constrained devices that still can’t even handle
that small amount of code, Web Services can also be invoked without using
SOAP at all. The WSDL specification also allows a port to be bound to an HTTP
POST or GET verb targeted at a specific address. This allows the invocation of a
Web Service be a simple as sending an HTTP POST or GET URL-encoded
request to a specific URL as shown below:

POST /EventService/EventServlet HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn
[CR][LF]
operation=EventService&authenticationToken=xXXdDj2edph
&description=motot+failure&source=54321

Figure 7 URL Encoding

Web Service frameworks targeted towards embedded systems exist that provide
an HTTP client & server and support URL encoding while consuming under
5Kbytes of code space.

Verbosity
The verbosity of the text oriented HTTP solution has multiple system impacts,
affecting RAM usage, bandwidth requirements and operating costs. XML is a
text based language and provides the significant advantage of making platform
independence a trivial task. The downside is that text based systems are

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 15

inherently less efficient than a binary system. This leads to more data being
transmitted and larger buffers required to both prepare outbound messages
and receive inbound messages. Once approach to addressing this downside is
a technique called Compact URL encoding. This encoding scheme builds on the
URL encoding provision built into the WSDL specification but adds further
compression to minimize both RAM usage and the amount of data sent over the
network. Savings of 5 to 10x are easily achievable.

8 and 16 Bit Support
Many platforms that claim to support embedded systems really mean they
support 32 bit systems that run a real time operating system (RTOS). In other
words, they support only about 15% of the processors out in the field. What
about the other 85% of the processors out there – are they doomed to
proprietary networking system at best or standalone operation at worst?
Certain proprietary networking software companies that say an 8 bit processor
simply can’t handle a full blown TCP/IP stack have been proven wrong (there
are at least a half dozen 8 bit TCP/IP solutions available today). Combining
these stacks with the URL encoding technique mentioned above creates a
whole new opportunity for connected systems. If the view of Web Services as a
distributed computing model is subscribed to, many new applications and
features are made possible. For example, addressing the slowly deteriorating
performance of an industrial compressor can be a complex statistical
calculation based on historical data and current environmental factors. If a
more capable application server has access to this information it can handle the
calculations, generate a service request for a field technician and also provide
feedback to the device such as going into a lower rpm mode to minimize
vibrations in order to extend the life of the asset until help arrives. This gives
the end customer continued use of that asset but perhaps at a lower capacity.
Eight bit applications that can invoke two different Web Services over a TCP/IP
stack (with full gateway routing support) have been demonstrated in under
20Kbytes of code on an 8051 type architecture. Consider the impact of even
the most mundane devices such as a compressor or smart sensor being able to
participate in the community of a business enterprise.

Enterprise Integration
The large number of packaged and custom developed enterprise applications is
only surpassed by the incredible number of different types of embedded
systems. The business rules surrounding specific events and actions add even
more complexity. In order to really extract the value of the information provided
by these newly connected devices it is critically important that this information
is accessible to the enterprise applications that can analyze the information and

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 16

apply the business rules. Standalone visualization tools, such as an HP
OpenView™ or Micromuse NetCool™ really only provide a view at the current
point in time, historical information, which is extremely valuable, is often lost.
Other solutions that provide a database to collect historical information along
with a specific point application are also available. Unfortunately, these
solutions provide little or no integration into the existing enterprise solutions
that often have cost a company several million dollars. The different data
models and APIs make this integration an onerous task. In addition, devices
may want to talk to multiple applications, such as both a Field Service
application and a spare parts procurement system making things even more
complicated. By incorporating customizable workflow engines into an
enterprises Web Service environment, end-to-end solutions can be created that
benefit all aspects of both the service and supply chains. As mentioned
previously, enterprise applications are quickly moving to the Web Services
model. What better way to ease the integration of devices into this enterprise
world than to speak the language.

Summary
Web Services are rapidly becoming the native language of business
applications. History shows that technologies designed for the enterprise often
find their way into embedded systems and that the speed of adoption for these
technologies is increasing. Capturing the real value of connecting devices to the
Internet goes much further than providing a standalone database for collecting
information or providing some proprietary XML interface.

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 17

Enterprise
Apps

Enterprise
Apps

Mobile
Worker

Enterprise
Apps

Device
Device
Devices

Internet

Device Data

En
te
rp

ris
e
In

foRem
ote Access

Figure 8 Integrating People, Devices and Enterprise Systems

As shown in Figure 8, a real system level approach results in the connection of
the devices that contribute information, the enterprise systems that can analyze
the information and apply the proper business rules, and the increasingly
mobile workers who can act on the results of the aforementioned analysis as
well as remotely interact with the devices. It is only when these three
constituencies are served that the tremendous value of the connected world can
be completely realized.

References
1 “A2B Technology Overview”, Questra Corporation, June 2001, http://www.questra.com
2 “SOAP Specification V1.1”, W3C Note 08, May 2000, http://www.w3.org/SOAP
3 “WSDL Specification”, W3C Note 15, March 2001, http://www.w3.org/TR/wsdl
4 “UDDI Specification”, uddi.org, September 2000, http://www.uddi.org

 Page

WEB SERVICES IN EMBEDDED SYSTEMS 18

Questra Corporation
350 Linden Oaks
Rochester, New York 14625
Phone: 716.381.0260
Fax: 716.381.8098
http://a2b.questra.com

Questra is the leading software and services firm focused on architecting, building and deploying Appliance-to-
Business™ (A2B™) solutions. A2B solutions power universal connectivity between enterprise systems and remote
devices, enabling companies to create new revenue channels, reduce costs, increase business efficiencies and build
stronger customer relationships. Questra A2B solutions are built on an open, scalable application platform that
provides the critical services needed to connect any smart device with enterprise CRM, eBusiness, ERP and legacy
systems. Questra provides comprehensive platform customization and integration services to deliver end-to-end A2B
solutions for sales, service and commerce. For more on Questra, visit a2b.questra.com, or contact us at
info@questra.com, 800.785.6359.

Questra, A2B, Appliance-to-Business, Questra A2B.Platform, Questra A2B.Sales, Questra A2B.Commerce, Questra A2B.Service and Transparent
Commerce are trademarks or registered trademarks of Questra Corporation.

